Современные тенденции в развитии технологий направлены на сохранение природной среды, экономию ресурсов, безопасность для окружения. В условиях постоянно повышающихся цен на основные энергоносители как никогда остро стоит вопрос о поиске дешевой и эффективной альтернативы. На таких принципах как раз и созданы микроморфные солнечные модули. Энергия солнца – это бесплатный и мощный ресурс, опираясь на который разрабатываются современные энергетические технологии.
Как устроены батареи
Работа солнечных батарей основана на модифицировании энергии прямых солнечных лучей в электрическую. Главной составляющей являются фотоэлементы, которые и выполняют функцию преобразователя.
Для производства фотоэлементов пользуются кремнием. Это вещество находится в земных недрах и его там достаточно большое количество (около 30%). Кремний перерабатывает солнечный свет, позволяя применять его в энергоснабжении.
Гетероструктурные солнечные батареи – это технологии нового поколения. До того как стать такими, они прошли долгий путь и все продолжают совершенствоваться:
- Первоначально панели для получения энергии из солнечных лучей изготовляли, применяя кремний в чистом виде. Такие батареи получили название монокристаллических. Чтобы получить чистый химический элемент, требуются большие трудозатраты и материальные вложения. Эти факторы отразились и на стоимости изделий. После плавления жидкого кремния и дальнейшего его отвердения материал разрезали на тонкие листы, которые оборудовали тонкими электродами, расположенными на поверхности в виде сетки. Стоимость такой гелиевой батареи высока, но ее КПД достигает 22%, и поэтому расходы на изготовление окупают себя.
- Для поликристаллических батарей используется поликристаллический кремний. Расходы на производство их значительно меньше, но меньше и КПД таких панелей (18%).
- Более совершенные панели стали производить с аморфным кремнием, изготавливая тончайшие пленки. В данном случае кристаллический кремний заменили силаном или кремневодородом. Их КПД измеряется 6%, но производство стоит намного дешевле предыдущих вариантов. Также эти батареи очень гибкие и хорошо работают в облачных погодных условиях.
- Самая современная технология – это микроморфные разработки на солнечные модули. Толщина применяемого кремния составляет 1 нанометр. Он наделен редкими характеристиками прозрачности для инфракрасного и видимого спектра волн. Этого удалось достичь переменой направлений структурных элементов в кремниевой кристаллической решетке.
Читайте также:
О характеристиках солнечных батарей
Технологический процесс
Чтобы сделать гетеростуктурный солнечный модуль, используются тонкие пленочные пластины в несколько слоев. Для их получения берут разные полупроводники, у которых имеется разница по широте, там, где находится «запрещенная зона». В результате внутри двух близлежащих слоев возникают переходы. Возникновение гетеропереходов позволяет получать повышенное сосредоточение носителей, нежели это возможно в структурах с одним слоем.
Микроморфный тонкопленочный солнечный модуль состоит из двух слоев полупроводников. В этом и заключается основное отличие от предшествующих моделей, в которых был только аморфный кремний. Благодаря микроморфному кремнию появилась возможность задействовать для преобразования в электричество больший охват световых лучей, что повышает его КПД.
Другими словами, электричество будет вырабатываться солнечными батареями не только в ясную солнечную погоду, но и при рассеянных лучах при облачности неба. Это положительно сказывается на увеличении деятельности панелей. Из приятных моментов стоит отметить их небольшую стоимость и безопасность для окружающей среды. А еще эти солнечные модули являются красивым наружным элементом для отделки строений и при этом служат дополнительным источником энергии.
Выпускаются энергопреобразующие панели компанией Hevel Solar по швейцарским технологиям. При номинальной мощности в 125 Вт батарея выдает напряжение 96,2 В. Температурный режим, при котором она активна, от -40°С до +90°С. Весит модуль около 26 кг.
Как подключать батареи
При установке солнечных батарей своими руками для получения максимальной мощности нужно подготовить провод достаточной длины, чтобы соединить панели с контроллерами.
Соединение панелей друг с другом должно быть последовательным, при этом нужно следить, чтобы они были одной мощности и напряжения. Нельзя допускать скручивания и спаивания проводов, чтобы в данных точках не произошло потерь энергии. При таком виде подключения не применяют соединение панелей, имеющих разное напряжение и мощности.
При параллельном подсоединении нельзя использовать несколько панелей с разными напряжениями, но с разными мощностями разрешается.
Правильно подобранные солнечные батареи, контроллеры, аккумуляторные кислотные батареи (АКБ) для токов панелей, корректно соединенные, даже при небольшом входном напряжении (12 вольт) будут выдавать высокий КПД.
Гетероэлектрик – отечественная инновация
Российские ученые несколько лет назад сделали открытие – гетероэлектрик, который составляет основу «звездной батареи». В ней объединены гетероэлектрический конденсатор с гетероэлектрическим фотоэлементом, работают они в видимых и инфракрасных излучениях. Разница в их работе по сравнению с солнечными модулями в возможности преобразовывать энергию не только при солнечном и рассеянном свете, но и в ночной период.
Гетероэлектрик помогает при управлении магнитным полем, а также при его трансформировании для производства оборудования с различными физическими свойствами.
Как вам статья?
Давайте в качестве эксперимента установим гетероэлектртсеские батареи под моими окнами на третьем этаже 12 м/п мощностью 15 кВт.