Новое поколение солнечных батарей: гибридные панели

Технологии 587 ,

Миниатюра к статье Новое поколение солнечных батарей: гибридные панели

60 лет прошло с тех пор, как первые солнечные батареи были установлены на внешнюю обшивку американских и советских спутников. С тех пор технологии шагнули далеко вперед. Энергию солнца используют не только для космических объектов, но и для обеспечения электричеством жилых домов. Появилось множество способов улавливать и перерабатывать солнечный свет. В ряду обычных солнечных батарей выделяется гибридная солнечная панель.

На основе кремния

Кремний (Si) – материал, который использовали еще для создания первых конструкций, перерабатывающих энергию солнечного света.

Долгое время существовало три типа таких батарей:

  • Монокристаллические (производят из цельных кристаллов). Обладают самым высоким КПД, но не способны улавливать рассеянный свет;
  • Поликристаллические (сделанные из кристаллов, направленных в разные стороны), способные улавливать даже рассеянный свет.
  • Аморфные гибкие панели с невысоким КПД, которые можно установить на поверхность любой конфигурации.

Гибридные солнечные панели на основе кремния сочетают аморфный кремний и монокристаллы. Эти панели эффективны в условиях недостаточной освещенности и способны эффективно работать дольше, чем стандартные аморфные устройства.

Крыши домов

На основе перовскита

Один из самых эффективных и недорогих способов преобразовывать в электроэнергию свет, который испускает солнце, – использовать перовскит. Этот материал впервые обнаружили в Уральских горах еще в ХХ веке. На него обратили внимание благодаря особой кристаллической решетке, свойственной полупроводникам. Про устройства на основе перовскита уже говорят, что это солнечные батареи нового поколения.

Для создания такого аккумулятора нужен тонкий слой проводящего материала и полимерная подложка. В итоге получается гибкая полупрозрачная панель, которую можно использовать не только как стационарную батарею, но и как материал для стекол, например. Она будет не только улавливать свет, но и защищать помещение от перегрева.

Единственная причина, по которой  гибридная солнечная панель из перовскита еще не завоевала весь мир – более низкая эффективность относительно кремниевых. Но, как показывают некоторые исследования, КПД можно улучшить при помощи правильно подобранного полимера. Например, швейцарские физики представили вещество FDT, недорогой материал, способный улучшать работу перовскитных батарей.

Панели

Еще одна удачная разработка – сочетание перовскита с кремнием. Используя эту методику, можно получить устройства, эффективно улавливающие и перерабатывающие УФ-лучи. Эти устройства могут быть гибкими и/или полупрозрачными. Значит, их можно использовать не только как стационарные источники энергии, но и для портативной техники, например.

Читайте также:
Плюсы и минусы перовскитных солнечных элементов

Из пентацена и сульфида свинца

В 2012 году выдающиеся физики Нил Гренхам и сэр Ричард Френд предложили новый вариант гибридного аккумулятора. От изобретенных ранее он отличается способностью преобразовывать все спектры УФ-излучения и высоким КПД. Эти аккумуляторы обладают внутренней квантовой эффективностью в 50%.

Представленная гибридная солнечная панель состоит из неорганического соединения (PbS, сульфид свинца) и полициклического ароматического углеводорода (пентацен). В этой связке PbS улавливает красную часть спектра, а пентацен – синюю, более насыщенную энергией. Благодаря взаимодействию между слоями на каждый пойманный синий фотон приходится по два электрона. Таким образом, КПД этой новинки в два раза больше, чем у других подобных устройств (обычно на один фотон приходится один электрон).

Два минуса изобретения – его сомнительная безвредность для окружающей среды и возможная недолговечность. Пентацен относится к группе соединений, способных провоцировать различные мутации и являющихся мощными канцерогенами.

Установка

Самый простой способ производства этого углеводорода – из бензола, являющегося производным нефти, запасы которой на нашей планете не бесконечны.

Недолговечность объясняется просто: пентацен склонен чрезмерно окисляться под воздействием кислорода в условиях облучения ультрафиолетом. Что, собственно, и будет происходить при эксплуатации такого аккумулятора. Так что практическое использование этой разработки находится под большим вопросом.

Наука не стоит на месте, ежедневно радуя человечество новейшими разработками в той или иной области. Так что можно надеяться, что рано или поздно появится достаточно эффективный солнечный аккумулятор, который будет и долговечным, и безвредным для окружающей среды.

Было полезно? - Сохраните информацию в социальных сетях:
Логотип сайта batteryk.com

Увы, комментариев пока нет. Станьте первым!

Поделитесь своим опытом

Данные не разглашаются. Вы можете оставить анонимный комментарий, не указывая имени и адреса эл. почты